
A Graph Transformation Approach to Architectural Run-Time
Reconfiguration

Michel Wermelinger
Departamento de Informática
Fac. de Ciências e Tecnologia
Universidade Nova de Lisboa
2825-114 Caparica, Portugal

mw@di.fct.unl.pt

Antónia Lopes and José Luiz Fiadeiro
Departamento de Informática

Faculdade de Ciências
Universidade de Lisboa

Campo Grande, 1700 Lisboa, Portugal
mal@di.fc.ul.pt jose@fiadeiro.org

Abstract

The ability of reconfiguring software architectures in
order to adapt them to new requirements or a changing
environment has been of growing interest. We propose
a uniform algebraic approach that improves on previous
formal work in the area due to the following charac-
teristics. First, components are written in a high-level
program design language with the usual notion of state.
Second, the approach deals with typical problems such
as guaranteeing that new components are introduced in
the correct state (possibly transferred from the old com-
ponents they replace) and that the resulting architecture
conforms to certain structural constraints. Third, re-
configurations and computations are explicitly related
by keeping them separate. This is because the approach
provides a semantics to a given architecture through the
algebraic construction of an equivalent program, whose
computations can be mirrored at the architectural level.

1 Introduction

1.1 Motivation

One of the topics which is raising increased interest
in the Software Architecture (SA) community is the
ability to specify how a SA evolves over time, in par-
ticular at run-time, in order to adapt to new require-
ments or new environments, to failures, and to mobil-
ity. There are several issues at stake, among them:

modification time and source Architectures may
change before execution, or at run-time (called dy-
namic reconfiguration). Run-time changes may be

triggered by the current state or topology of the
system (called programmed reconfiguration [6]) or
may be requested unexpectedly by the user (called
ad-hoc reconfiguration [6]).

modification operations The four fundamental op-
erations are addition and removal of components
and connections. Although their names vary,
those operators are provided by most reconfigu-
ration languages (like [6, 15, 1]). In programmed
reconfiguration, the changes to perform are given
with the initial architecture, but they may be exe-
cuted when the architecture has already changed.
Therefore it is necessary to query at run-time the
state of the components and the topology of the
architecture.

modification constraints Often changes must pre-
serve several kinds of properties: structural (e.g.,
the architecture has a ring structure), functional,
and behavioural (e.g., real-time constraints).

system state The new system must be in a consistent
state.

1.2 Related Work

There is a growing body of work on architectural
reconfiguration, some of it related to specific Architec-
ture Description Languages (ADL), and some of for-
mal, ADL-independent nature. Most of the proposals
exhibit one of the following drawbacks.

• Arbitrary reconfigurations are not possible: Dar-
win [13] only allows component replication; ACME
[18] only allows optional components and connec-
tions; Wright [1] requires the number of distinct
configurations to be known in advance; [11] use

mailto:mw@di.fct.unl.pt
mailto:mal@di.fc.ul.pt
mailto:jose@fiadeiro.org


context-free reconfiguration rules, which does not
permit to create a new connection between exiting
components, for example.

• The languages to represent computations are very
simple and at a low level: rewriting of labels [11],
process calculi [16, 2, 1], term rewriting [20, 8],
graph rewriting [19]. They do not capture some of
the abstractions used by programmers and often
lead to cumbersome specifications.

• The combination of reconfiguration and computa-
tion, needed for run-time change, leads to addi-
tional formal constructs: [11] uses constraint solv-
ing, [16, 1, 2] define new semantics or language
constructs for the process calculi, [8] must dynam-
ically change the rewriting strategies, [19] imposes
many constraints on the form of graph rewrite
rules because they are used to express computa-
tion, communication, and reconfiguration. This
often results in a proposal that is not very uni-
form, or has complex semantics, or does not make
the relationship between reconfiguration and com-
putation very clear.

1.3 Approach

To overcome these disadvantages, we have proposed
an algebraic framework [22] using categorical diagrams
to represent architectures, the double-pushout graph
transformation approach1 [5] to describe reconfigura-
tions, and a program design language with explicit
state to describe computations.

In this paper we refine our approach, introducing the
notions of productive reconfiguration step and architec-
tural style. To accommodate the latter, we have made
the underlying mathematical definitions (not shown in
this extended abstract) more uniform, based on the
category of typed graphs [4], a generalisation of labelled
graphs. Moreover, we cope with ad-hoc reconfigura-
tion.

The running example is an airport luggage distribu-
tion system. One or more carts move continuously in
the same direction on a N -units long circular track. A
cart advances one unit at each step. Carts must not
bump into each other. This is achieved by changing
the movement interactions between carts, depending
on their location. Reconfigurations may be due not
only to mobility but also to component upgrade: a cart
may be replaced by one with a built-in lap counter.

1To make the paper self-contained, the appendix contains an
informal summary of the needed mathematical definitions.

2 CommUnity

2.1 Programs

CommUnity [7] is a parallel program design lan-
guage based on Unity [3] and IP [9]. A program con-
sists of a set of typed input and output variables, a
boolean expression to be satisfied by the initial values
of the output variables, and a set of actions, each of the
form name: guard → assignment(s). Action names act
as rendez-vous points for program synchronisation (see
Section 3). The empty set of assignments is denoted by
skip. At each step, one of the actions is selected and, if
its guard—a boolean expression over the variables—is
true, its assignments are executed simultaneously. The
values of the input variables are given by the environ-
ment and may change at each step. Input variables
may not be assigned to by the program.

The next program describes the behaviour of a cart.

prog Cart
out l : int
init 0 ≤ l < N
do move: true → l := (l + 1) mod N

Henceforth we abbreviate “(l + 1) mod N” as “l +N

1” and omit the action guards when they are “true”.
To take program state into account, we introduce

a fixed set of typed variables, called logical variables.
For the rest of the paper, it is the set {i, j : int, n :
nat}. A program instance is then defined as a program
together with a valuation function that assigns to each
output variable a term (over logical variables) of the
same type. No valuation is assigned to input variables
because those are not under control of the program.
Notice also that the valuation may return an arbitrary
term, not just a ground term. Although in the running
system the value of each variable is given by a ground
term, we need variables to be able to write reconfigu-
ration rules whose left-hand sides match components
with possibly infinite distinct combinations of values
for their variables. We represent program instances in
tabular form (see below).

2.2 Superposition

A morphism from a program P to a program P ′

states that P is a component of the system P ′ and, as
shown in [7], captures the notion of program superpo-
sition [3, 9]. Mathematically speaking, the morphism
maps each variable of P into a variable of P ′ of the
same type—such that output variables of the compo-
nent P are mapped to output variables of the system



P ′—and it maps each action name a of P into a (possi-
ble empty) set of action names {a′1, . . . , a′n} of P ′ [21].
Those actions correspond to the different possible be-
haviours of a within the system P ′. Thus each action
a′i must preserve the functionality of a, possibly adding
more things.

The next diagram shows in which way program
“Cart” can be superposed with a counter that checks
how often the cart passes by its start position. No-
tice how the second program strengthens the initiali-
sation condition and it divides action “move” in two
sub-cases.

prog Cart . . .

l 7→locmove7→{move,pass}
��

prog CartWithLaps
out loc, sloc, laps : int
init 0 ≤ loc < N ∧ sloc = loc ∧ laps = 0
do pass: loc +N 1 = sloc

→ loc := loc +N 1 ‖ laps := laps + 1
[] move: loc +N 1 6= sloc → loc := loc +N 1

A morphism between program instances is simply a
superposition morphism that preserves the state. To
be more precise, if an output variable of P is mapped
to an output variable of P ′, their valuations must be
the same for any substitution of the logical variables.
An example is

Cart
l i

l 7→loc
move7→{move,pass}

//

CartWithLaps
l 1 ∗ i
sloc i+N 1
laps n+ 1

where the instance on the right represents a cart that
has completed at least one lap and will complete an-
other one in the next step.

3 Architectures

3.1 Configurations

Interactions between programs are established
through action synchronisation and memory sharing.
This is achieved by relating the relevant action and
variable names of the interacting programs.

The categorical framework imposes the locality of
names. To state that variable (or action) a1 of pro-
gram P1 is the same as variable (resp. action) a2 of
P2 one needs a third, “mediating” program C—the
channel—containing just a variable (resp. action) a
and two morphisms σi : C → Pi that map a to ai. A

channel has no computations of its own. Therefore it
has no output variables (hence no assignments nor ini-
tialisation condition) and all actions have true guards.
We abbreviate a channel as 〈I | A〉, where I is the set
of input variables and A is the set of action names.

Problems arise if two synchronised actions update
a shared variable in distinct ways. As actions only
change the values of output variables, it is sufficient
to impose that output variables are not shared, nei-
ther directly through a single channel nor indirectly
through a sequence of channels. We call such diagrams
configurations. This restriction forces interactions be-
tween programs to be synchronous communication of
values (from output to input variables), a very general
mode of interaction that is suitable for the modular
development of reusable components, as needed for ar-
chitectural design.

It can be proved that every finite configuration has a
colimit, which returns the minimal program that sim-
ulates the execution of the overall system. Briefly put,
the colimit is obtained by taking the disjoint union of
the variables (modulo shared variables), the cartesian
product of actions (modulo synchronized ones)—to de-
note parallel execution of non-synchronised actions—
, and the conjunction of the initialisation conditions.
Actions are synchronized by taking the conjunction of
the guards and the parallel composition of assignments.
An example is provided in the next section.A configu-
ration instance is a configuration whose nodes are pro-
gram instances. Since output variables are not shared,
they have no conflicting valuations. Therefore every
configuration instance has a colimit, given by the col-
imit of the underlying configuration together with the
union of the valuations of the program instances.

3.2 Connectors

SA has put forward the notion of connector to en-
capsulate the interactions between components. An
n-ary connector consists of n roles Ri and one glue G
stating the interaction between the roles. These act
as “formal parameters”, restricting which components
may be linked together through the connector. We rep-
resent a connector by a diagram of the form

C1γ1

vvmmmmmm
ρ1 // R1

G ...
...

Cn

γnhhQQQQQQ ρn // Rn
where the channels indicate which variables and actions
of the roles are used in the interaction specification, i.e.,
the glue. An n-ary connector can be applied to compo-
nents P1, . . . , Pn when morphisms ιi : Ri → Pi exist.
This corresponds to the intuition that the “actual ar-



guments” (i.e., the components) must instantiate the
“formal parameters” (i.e., the roles).

An architecture (instance) is then a configuration
(instance) where all components interact through con-
nectors, and all roles are instantiated. Hence any ar-
chitecture has a semantics given by its colimit, which
returns the minimal program that simulates the execu-
tion of the overall system.

To avoid a cart c1 colliding with the cart c2 right in
front of it we only need to make sure that if c1 moves,
so must c2, but the opposite is not necessary. We say
action a subsumes action b if b executes whenever a
does. This can be seen as a partial synchronisation
mechanism: a is synchronised with b, but b can still
execute freely. The diagram in Figure 1 shows the ap-
plication of the generic action subsumption connector
to two carts and the resulting colimit. Notice that al-
though the two roles are isomorphic, the binary connec-
tor is not symmetric because the channel morphisms
and the glue treat the two actions differently: “b” may
be executed alone at any time, while “a” must co-occur
with “b”.

3.3 Style

In general, a role may be instantiated by different
components, and it may be even the case that the
same component can instantiate the same role in dif-
ferent ways (e.g., if ‘Cart’ had other actions). But nor-
mally only a few of all the possibilities are meaning-
ful to the application at hand. The allowed ways to
apply connectors to components can be described by
typed graphs. This leads to a declarative notion of
architecture style: it consists of a set of components,
a set of connectors, and a diagram T in the category
of programs and superposition morphisms using only
those connectors and components. Every architecture
written by the user must then come equipped with a
morphism to T proving that it obeys the restrictions
imposed by T . As for an architecture instance, it is
well-typed if the underlying architecture, obtained by
forgetting the valuations, is. We believe that this ap-
proach to architectural styles, besides being simple to
use, is also sufficient in many occasions, namely when
only the kinds of interactions between the given com-
ponents have to be restrained. Abstract architectural
patterns (e.g., pipe-filter, layer) cannot be described
with our approach.

For our example, the set of components is ‘Cart’
and ‘CartWithLaps’, the set of connectors is just the
action subsumption connector shown before, and the
architecture type T (with morphisms as shown in pre-

vious diagrams) is

〈 | a〉

��

// Subsume 〈 | b〉oo

��
Subsumer // Cart

��

Subsumedoo

CartWithLaps

stating that the connector may be applied to carts only,
which in turn may be refined with a lap counter.

Notice that a style T , by showing all possible mor-
phisms that may occur in an architecture, also restricts
the visibility of variables, stating which output vari-
ables are to be shared (and how) and which are private
to each program.

It is important to notice that T is not necessar-
ily a configuration: since it shows in a single diagram
all morphisms that may occur in architectures, it may
happen that output variables are shared in T .

4 Dynamic Reconfiguration

Basically, we represent dynamic reconfiguration as
a rewriting process over graphs with nodes labelled
by program instances and arcs labelled by instance
morphisms. In essence, a reconfiguration rule is a
graph production, and a reconfiguration step is a di-
rect derivation. This ensures that the state of compo-
nents and connectors that are not affected by a rule
does not change, because node labels (which include
the variables’ valuations) are preserved, thus keeping
reconfiguration and computation separate. However,
we must make slight adaptations of the basic graph
transformation framework to our setting.

First, in the double-pushout approach, there is no
restriction on the obtained graphs, but in reconfigura-
tion we must check that the result is indeed an archi-
tecture, otherwise the rule (with the given match) is
not applicable. Without this restriction, it would be
possible for a rule to introduce a connector that would
lead to sharing of output variables, for example.

Second, it should not be possible to apply the same
rule in the same way (i.e., to the same program in-
stances) more than once because that would lead to in-
finite reconfiguration sequences. To this end we restrict
the allowed reconfiguration sequences by considering
only productive direct derivations G

p,m
=⇒ H: there are

no graph morphisms lr : L → R and x : R → G such
that lr;x = m. The existence of lr shows that produc-
tion p does not delete any nodes or arcs. The remaining
conditions check that the match is being applied to a
part of G that corresponds to the right-hand side R



〈 | a〉
a7→a

��

a7→ab //
prog Subsume
do ab: skip
[] b: skip

〈 | b〉
{ab,b}←[boo

b 7→b ��
prog Subsumer
do a: skip

a7→move

��

prog Subsumed
do b: skip

b7→move

��
prog Cart . . .

l 7→fl

move 7→ab
//

prog Carts
out fl, nl : int
init 0 ≤ fl < N ∧

0 ≤ nl < N
do ab: [fl:=fl +N 1

‖ nl:=nl +N 1]
[] b: nl:=nl +N 1

prog Cart . . .nl← [l

{ab,b}←[move
oo

Figure 1. An applied action subsumption connector and its colimit

and therefore can have been generated by a previous
application of this production. Our definition is a par-
ticular case of productions with application conditions
[10]: a derivation is productive if p is applicable to G
using the negative application condition lr.

Third, dynamic reconfiguration rules must be condi-
tional, because they depend on the current state. Thus
they are of the form L

l←− K
r−→ R if B, with B a

proposition over the logical variables occurring in L.
Moreover, a rule can only be applied if every new com-
ponent added by the rule is in a precisely determined
state that satisfies the initialisation condition, in or-
der to be able to perform computations right away.
For that purpose, we require that the logical variables
occurring in R also occur in L. The definition of re-
configuration step must be changed accordingly. At
any point in time the current system is given by an
architecture instance whose valuations return ground
terms. Therefore the notion of matching must also in-
volve a compatible substitution of the logical variables
occurring in the rule by ground terms. If we apply the
substitution to the whole rule, we obtain a rule without
logical variables that can be directly applied to the cur-
rent architecture using the normal definition of deriva-
tion as a double pushout over labelled graphs. How-
ever, the notion of state introduces two constraints.
First, the substitution must obviously satisfy the appli-
cation condition B. Second, the derivation must make
sure that the state of each program instance added by
the right-hand side satisfies the respective initialisation
condition.

Returning to our example, to avoid collisions we give
in Figure 2 a rule that applies the action subsumption
connector to two carts that are less than 3 units apart,

where the graph morphisms l and r are obvious. The
opposite rule (with the negated condition) is necessary
to remove the connector when no longer needed.

As a second example, if we want to add a counter to
a cart, no matter which connectors it is currently linked
to, we just unconditionally superpose the ’CartWith-
Laps’ program on it, with ι the morphism shown at the
end of Section 2:

Cart
l i

Cart
l i

oo // Cart
l i

ι //

CartWithLaps
l i
sloc i
laps 0

The conditions mentioned above imply that this rule
can only be applied with a substitution that satisfies
0 ≤ i ≤ N . This example illustrates how to describe
the transfer of state from old to new components. In
this case it is just a copy of value i, but in general the
right-hand side may contain arbitrarily complex terms
that calculate the new values from the old ones.

If there is an architectural style T , then the three
architecture instances in a reconfiguration rule must be
typed by T . It can be proved that the graph obtained
through direct derivation is also well-typed.

To coordinate computations and reconfigurations,
the run-time infrastructure executes the following se-
quence:

1. allow the user to change the style and the set of
reconfiguration rules;

2. find a maximal sequence of reconfiguration steps
starting with the current architecture instance A,
obtaining A′;

3. compute the colimit S of A′;



Cart
l i

Cart
l j

Cart
l i

Cart
l j

r //loo

〈 | a〉 a7→ab //

a7→a
��

Subsume 〈 | b〉
{ab,b}←[boo

b7→b
��

Subsumer

a7→move
��

Subsumed

b 7→move
��

Cart
l i

Cart
l j

if j = i+N 1 ∨ j = i+N 2

Figure 2. Introduction of the action subsumption connector

4. if none of the S’s actions can be executed, stop,
otherwise update the values of S’s variables ac-
cording to the chosen action;

5. propagate through the colimit morphisms the
changes back to the variables of the program in-
stances of A′, call the new diagram A, and go to
step 1.

The first step caters for ad-hoc reconfiguration. In our
example, it allows to add the CartWithLaps program
to the style and to add the last rule shown. Step 5 keeps
the state of the program instances in the architectural
diagram consistent with the state of the colimit, and
ensures that at each point in time the correct condi-
tional rules are applied. As [14, 11] we adopt a two-
phase approach: computations (step 4) are interleaved
with reconfiguration sequences (step 2). In this way,
the specification of the components is simpler, because
it is guaranteed that the necessary interconnections are
in place as soon as required by the state of the compo-
nents.

5 Concluding Remarks

We have refined our algebraic foundation for dy-
namic software architecture reconfiguration. Our ap-
proach has several advantages over previous work
[11, 16, 1, 2, 8, 20]:

• context-dependent rewriting allows arbitrary re-
configurations;

• computations (on a program) and reconfigurations
(on an architecture) are explicitly related through
a colimit operation, because we do not rewrite just
graphs, but diagrams in a category of programs
with superposition;

• the maintenance of state consistency during
reconfiguration—how to transfer state, in which
state reconfigurations are possible, what is the
state of new components—is straightforward to
specify, due to the use of a program design lan-
guage that is more natural than terms, process
calculi, or graphs, leading to easy to read rules.

The algebraic graph transformation approach com-
bines well with our categorical framework for archi-
tectural design and has several advantages: it enforces
that component state is only changed by computations,
not by reconfiguration steps; the application condi-
tions of the double-pushout approach enforce that com-
ponents are not removed while linked to connectors,
thus not leaving “dangling” roles (not shown in this
abstract); the negative application conditions can be
used to avoid useless changes to the architecture; typed
graphs provide, besides a uniform mathematical basis,
a declarative and simple notion of style—sufficient to
describe certain structural modification constraints—
that can be automatically maintained during reconfig-
uration.

References

[1] R. Allen, R. Douence, and D. Garlan. Specifying and
analyzing dynamic software architectures. In Funda-
mental Approaches to Software Engineering, volume
1382 of LNCS, pages 21–37. Springer-Verlag, 1998.

[2] C. Canal, E. Pimentel, and J. M. Troya. Specifica-
tion and refinement of dynamic software architectures.
In Software Architecture, pages 107–125. Kluwer Aca-
demic Publishers, 1999.

[3] K. M. Chandy and J. Misra. Parallel Program
Design—A Foundation. Addison-Wesley, 1988.

[4] A. Corradini, U. Montanari, and F. Rossi. Graph pro-
cesses. Fundamentae Informatica, 26(3–4):241–266,
1996.



[5] A. Corradini, U. Montanari, F. Rossi, H. Ehrig,
R. Heckel, and M. Löwe. Algebraic approaches to
graph transformation, part I: Basic concepts and dou-
ble pushout approach. Technical Report TR-96-17,
University of Pisa, Mar. 1996.

[6] M. Endler. A language for implementing generic dy-
namic reconfigurations of distributed programs. In
Proceedings of the 12th Brazilian Symposium on Com-
puter Networks, pages 175–187, 1994.

[7] J. L. Fiadeiro and T. Maibaum. Categorial seman-
tics of parallel program design. Science of Computer
Programming, 28:111–138, 1997.

[8] J. L. Fiadeiro, M. Wermelinger, and J. Meseguer. Se-
mantics of transient connectors in rewriting logic. Po-
sition Paper for the First IFIP Working International
Conference on Software Architecture, Feb. 1999.

[9] N. Francez and I. Forman. Interacting Processes.
Addison-Wesley, 1996.

[10] A. Habel, R. Heckel, and G. Taentzer. Graph gram-
mars with negative application conditions. Funda-
menta Informaticae, 26(3–4), 1996.

[11] D. Hirsch, P. Inverardi, and U. Montanari. Modelling
software architectures and styles with graph grammars
and constraint solving. In Software Architecture, pages
127–143. Kluwer Academic Publishers, 1999.

[12] M. Löwe. Algebraic approach to graph transformation
based on single pushout derivations. Technical Report
90/5, Technische Universität Berlin, Fachbereich 13,
Informatik, 1990.

[13] J. Magee and J. Kramer. Dynamic structure in soft-
ware architectures. In Proceedings of the Fourth ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, pages 3–14. ACM Press, 1996.

[14] P. J. McCann and G.-C. Roman. Compositional pro-
gramming abstractions for mobile computing. IEEE
Transactions on Software Engineering, 24(2), Feb.
1998.

[15] N. Medvidovic. ADLs and dynamic architecture
changes. In Joint Proceedings of the SIGSOFT’96
Workshops, pages 24–27. ACM Press, 1996.

[16] D. L. Métayer. Describing software architecture styles
using graph grammars. IEEE Transactions on Soft-
ware Engineering, 24(7):521–553, July 1998.

[17] J. C. Mitchell. Foundations for Programming Lan-
guages. MIT Press, 1996.

[18] R. T. Monroe, D. Garlan, and D. Wile. Acme Straw-
Manual, Nov. 1997.

[19] G. Taentzer, M. Goedicke, and T. Meyer. Dynamic
change management by distributed graph transforma-
tion: Towards configurable distributed systems. In
Proc. 6th Int. Workshop on Theory and Application
of Graph Transformation, 1998.

[20] M. Wermelinger. Towards a chemical model for soft-
ware architecture reconfiguration. IEE Proceedings—
Software, 145(5):130–136, Oct. 1998.

[21] M. Wermelinger and J. L. Fiadeiro. Connectors for
mobile programs. IEEE Transactions on Software En-
gineering, 24(5):331–341, May 1998.

[22] M. Wermelinger and J. L. Fiadeiro. Algebraic
software architecture reconfiguration. In Software
Engineering—ESEC/FSE’99, volume 1687 of LNCS,
pages 393–409. Springer-Verlag, 1999.

A Mathematical Definitions

A.1 Category Theory

Category Theory [17] is the mathematical discipline
that studies, in a general and abstract way, relation-
ships between arbitrary entities. A category is a collec-
tion of objects together with a collection of morphisms
between pairs of objects. A morphism f with source
object a and target object b is written f : a → b or
a

f−→ b. Morphisms come equipped with a composi-
tion operator “;” such that if f : a → b and g : b → c
then f ; g : a → c. Composition is associative and has
identities ida for every object a.

Diagrams are directed graphs—where nodes denote
objects and arcs represent morphisms—and can be
used to represent “complex” objects as configurations
of smaller ones. For categories that are well behaved,
each configuration denotes an object that can be re-
trieved through an operation on the diagram called
colimit. Informally, the colimit of a diagram returns
the “minimal” object such that there is a morphism
from every object in the diagram to it (i.e., the colimit
contains the objects in the diagram as components)
and the addition of these morphisms to the original
configuration results in a commutative diagram (i.e.,
interconnections, as established by the morphisms of
the configuration diagram, are enforced).

Pushouts are colimits of diagrams of the form b
f←−

a
g−→ c. By definition of colimit, the pushout returns

an object d such that the diagram
a

f

������� g

��<<<<<

i

��

b

h ��;;;;; c

j�������

d
exists and commutes (i.e., f ;h = i = g; j). Further-
more, for any other pushout candidate d′, there is a
unique morphism k : d → d′. This ensures that d,
being a component of any other object in the same
conditions, is minimal. Object c is called the pushout
complement of diagram a

f−→ b
h−→ d.

A.2 Graph Transformation

The algebraic approach to graph transformation [5]
was introduced over 20 years ago in order to generalize



grammars from strings to graphs. Hence it was nec-
essary to adapt string concatenation to graphs. The
approach is algebraic because the gluing of graphs is
done by a pushout in an appropriate category. There
are two main variants, the double-pushout approach
[5] and the single-pushout approach [12]. We only use
the former. It is based on a category whose objects are
labelled graphs and whose morphisms f : a → b are
total maps (from a’s nodes and arcs to those of b) that
preserve the labels and the structure of a.

A graph transformation rule, called graph produc-
tion, is simply a diagram of the form L

l←− K
r−→ R

where L is the left-hand side graph, R the right-hand
side graph, K the interface graph and l and r are injec-
tive graph morphisms. The rule states how graph L is
transformed into R, where K is the common subgraph,
i.e., those nodes and arcs that are not deleted by the
rule. As an example, the rule

a • 1

f 2

��
a • 3

a • 1

a • 2

1← [1
3← [2

oo 1 7→1

2 7→3
//

a • 1

a • 3

g 2

OO

substitutes an arc by another. Graphs are written
within dotted boxes to improve readability. Nodes and
arcs are numbered uniquely within each graph to show
the mapping done by the morphisms.

A production p can be applied to a graph G if the
left-hand side can be matched to G, i.e., if there is a
graph morphism m : L→ G. A direct derivation from
G to H using p and m exists if the diagram

L

m

��

K
l

oo
r

//

d

��

R

m∗

��
G D

l∗oo r∗ // H
can be constructed, where each square is a pushout.
Intuitively, first the pushout complement D is obtained
by deleting from G all nodes and arcs that appear in
L but not in K. Then H is obtained by adding to
D all nodes and arcs that appear in R but not in K.
The fact that l and r are injective guarantees that H
is unique. An example derivation using the previously
given production is Figure 3.

A direct derivation is only possible if the match m
obeys two conditions. First, if the production removes
a node n ∈ L, then each arc incident to m(n) ∈ G must
be image of some arc attached to n. Second, if the
production removes one node (or arc) and maintains
another one, then m may not map them to the same
node (or arc) in G.

Two examples in which the match violates these
conditions are represented by the following diagrams,
where ∅ is the empty graph.

a • 1

f 2

��
a • 3

17→1
27→2

37→1

��

a • 1

a • 2

1←[1
3←[2

oo 17→1

27→3
//

17→1 2 7→1

��

a • 1

a • 3

g 2

OO

17→1
27→2

37→1

��
a • 1

f 2

::

f 3
��

b • 4

a • 1

f 3

��
b • 2

1←[1,4←[2

3←[3
oo 1←[1,4←[2

3←[3
//

a • 1

g 2

::

f 3

��
b • 4

Figure 3. Applying a graph production

a • 1

17→1
��

∅oo

a • 1
f

2
//b • 3

a • 1 a • 2

17→1 27→1

��

a • 1
1←[1oo

a • 1

Both conditions are quite intuitive. The first one
prevents dangling arcs, the second one avoids contra-
dictory situations. Both allow an unambiguous predic-
tion of removals. A node ofG will be removed only if its
context (i.e., adjacent arcs and nodes) are completely
matched by the left-hand side of some production. The
advantage is that the production specifier can control
exactly in which contexts a node is to be deleted. This
means it is not possible to remove a node no matter
what other nodes are linked to it.


	Introduction
	Motivation
	Related Work
	Approach

	CommUnity�uturelet @let@token 
	Programs
	Superposition

	Architectures
	Configurations
	Connectors
	Style

	Dynamic Reconfiguration
	Concluding Remarks
	Mathematical Definitions
	Category Theory
	Graph Transformation


